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Abstract

We discuss how to describe the Markov chain underlying a generalized stochastic Petri net using Kro-

necker operators on smaller matrices. We extend previous approaches by allowing both an extensive

type of marking-dependent behavior for the transitions and the presence of immediate synchronizations.

The derivation of the results is thoroughly formalized, including the use of Kronecker operators in the

treatment of the vanishing markings and the computation of impulse-based reward measures. We use

our techniques to analyze a model whose solution using conventional methods would fail because of the

state-space explosion. In the conclusion, we point out ideas to parallelize our approach.
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1 Introduction

Generalized stochastic Petri nets (GSPNs) [2, 3, 6] are ideally suited to model a large class of performance

and reliability problems, but their numerical analysis requires the solution of a very large continuous-

timeMarkov chain (CTMC). The size of the transition rate matrixR for the CTMC is the main obstacle,

since its memory requirements can easily exceed the capacity of today's (and tomorrow's) machines even

when sparse storage techniques are employed.

A possible approach to this problem is to store R implicitly. Plateau [14] proposed the use of

Kronecker operators for the description of the transition rate matrix of a structured model composed

of a set of \synchronized" stochastic automata, a subclass of GSPNs. Buchholz [4] used a similar idea

for Markovian closed asynchronous queueing networks, and Takahashi [17] used it for open queueing

networks with communication blocking. Donatelli [10, 11] adapted the approach to GSPNs, de�ning

�rst the \superposed stochastic automata", then the \superposed GSPNs". Later, Buchholz [5] applied

the concept to the special case of marked graphs and Kemper [12] addressed some of the problems in

[11], extending the applicability of the results.

These approaches have in common a decomposition of the model into a set of submodels, so that

the state space of the CTMC underlying the entire model is a subset of the cross-product of the state

spaces of the CTMCs underlying each submodel. This implies that the transition rate for the entire

model can be described using Kronecker operators on smaller matrices.

Focusing on GSPNs, the result of decomposing a GSPN is a set of largely independent sub-GSPNs,

but some transitions will be shared by multiple sub-GSPNs, to model interactions among them. If a

transition tj is shared by two sub-GSPNs A1 and A2, and tj has input and output places in both of

them, this models a synchronization. A1 and A2 \wait for each other" and the event corresponding to

tj occurs only when they are both \ready". An alternative case arises when tj has its input places in A1

and its output places in A2. This describes an asynchronous (and asymmetric) communication, since A2

must \wait for permission" from A1. However, if an output place of tj in A2 has a capacity de�ned for

it, A1 will wait for A2 as well. One of the contributions of our work is to present a uni�ed framework for

all these types of interactions. Indeed, we do not assume that the net possesses any particular structure.

The solution of a decomposed GSPN is then based on the following idea [11]. Let ni be the number

of states in S iT , the state space for the CTMC underlying the i-th sub-GSPN, i = 1; . . . ; N . S 0T =

S1T � . . .�SNT � ST is the \potential state space" for the model, usually (much) larger than the actual

state space ST , so that a transition rate matrix R0 is de�ned using Kronecker algebra:

R0 =
NM
i=1

Ri +
X

tj2T
�

NO
i=1

Ri;j;

where Ri describes the local transitions for the i-th sub-GSPN (including the e�ect of immediate

transitions), T � is the set of synchronizing transitions, which must be timed, and the \corrective matrix"

Ri;j describes the e�ect of tj on the i-th sub-GSPN.

The actual transition rate matrix R can be obtained from R0 by eliminating the rows and columns

corresponding to the unreachable states in S 0T n ST , but this requires an additional overhead, since

the composition of a marking does not directly indicate whether it is reachable or not. Hence, an
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alternative approach was initially suggested. The power or Jacobi method is used to compute the

steady-state solution in a vector �0 of size jS 0T j. By assigning a nonzero initial probability only to

markings in ST , the solution �0 is guaranteed to be zero for any marking m 2 S 0T n ST . This simpli�es

the algorithm, since m can now be interpreted as the mixed-base integer index of the corresponding

entries in R0 and �0, but the memory requirement might be excessive when jS 0T j � jST j.

To reduce the impact of unreachable markings, Kemper [12] proposed a technique that only requires

a probability vector � of size jST j . In the numerical iterations, for each m 2 ST , each entry R0

m;n > 0

is generated (this implies n 2 ST ) and, given n, its index k in �, or its lexicographic position in ST , is

computed in O(log jST j) operations, using a binary search.

We unify previous work by o�ering a thorough discussion of the structure of the underlying CTMC,

including the management of immediate transitions and vanishing markings. Our formalism is more

general than those assumed in [4, 5, 10, 11, 12], since we allow for marking-dependent arc cardinali-

ties and rates, subject to certain restrictions, hence our results include those previously mentioned as

special cases. Then, using an approach based on discrete-time Markov chains (DTMCs), we also re-

move the main restriction previously imposed on the decomposition of the GSPN: we allow immediate

synchronizing transitions. Finally, we consider a reward structure de�ned on the GSPN, and we show

how to compute the expected reward in steady-state in the Kronecker framework. This is of particular

importance for impulse rewards associated with immediate transitions, whose �ring are only implicitly

represented in R.

The paper is structured as follows. Section 2 describes the notation used and recalls the main

concepts of Kronecker algebra, GSPNs, Markov chains, and rewards. Section 3 presents the expression

for the transition rate matrix of the CTMC underlying a generic GSPN, provided its transitions satisfy

certain restrictions on the type of marking-dependency. The result is quite general, but not directly

applicable, since it requires one to compute the inverse of a matrix described as the sum of Kronecker

products. However, Sections 4 and 5 use it to derive computationally e�ective expressions for GSPNs

with timed and immediate synchronizing transitions, respectively. Implementation and application of

these results are shown in Section 6, including detailed information about computation time and memory

requirements. Section 7 contains a summary and discusses future extensions, including distributed

implementations and approximate solutions.

2 Notation and de�nitions

Except for IN , the sets of natural numbers, f0; 1; 2 . . .g, and IR, the set of real numbers, all sets are

denoted by upper case calligraphic letters (e.g., A); vectors and matrices are denoted by lower and

upper case bold letters, respectively (e.g., a, A); their entries are denoted by subscripts (e.g., ak, Ak;l);

a set of indices can be used instead of a single index, for example, AX ;Y denotes the submatrix of

A corresponding to set of rows X and the set of columns Y. Superscripts denote families of related

quantities (e.g., A1, A2). 0x�y and 1x�y denote matrices with x rows and y columns, having all entries

equal to 0 or 1, respectively, while Ix denotes the identity matrix of size x� x; the dimensions of these

matrices are omitted when they are clear from the context. Given a vector a, diag(a) is a square matrix
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having a on the diagonal and zeros elsewhere. Given an n � n matrix A, rowsum(A) = diag(A � 1n�1)

is a matrix having the diagonal equal to the sums of the entries on each row of A, and zeros elsewhere,

while �(A) is a matrix having the same nonzero pattern as A, but with entries equal to either 0 or 1.

2.1 Kronecker algebra

We recall the de�nition of the Kronecker product B =
NK

k=1A
k of K matrices Ak 2 IRnk�mk , using the

convention that the rows and columns of both B and the matrices Ak are indexed starting at 0. The

generic element of B 2 IR
Q

K

k=1
nk�

Q
K

k=1
mk is

B(:::((i1)n2+i2)n3���)nk+ik;(:::((j1)m2+j2)m3���)mk+jk = A1
i1;j1

A2
i2;j2
� � �AK

iK ;jK

with 0 � ik < nk and 0 � jk < mk, for k = 1; . . . ;K. Assuming a mixed-base numbering scheme

so that the tuple (l1; l2; . . . lK) corresponds to row (:::((l1)n2 + l2)n3 � � �)nk + lk or column (:::((l1)m2 +

l2)m3 � � �)mk+lk, respectively, we will also write the above quantity, more succinctly, asB(i1;i2;...ik);(j1;j2;...jk).

The Kronecker sum
LK

k=1A
k of K square matrices Ak 2 IRnk�nk is de�ned as

KM
k=1

Ak =
KX
k=1

In1 
 � � � 
 Ink�1 
A
k 
 Ink+1 � � � 
 InK :

2.2 Generalized stochastic Petri nets

A generalized stochastic Petri net (GSPN) is a tuple (P;T ;I;C�;C+;m0;w), where:

� P = fp1; . . . ; pjPjg is a �nite set of places, drawn as circles in the graphical representation of the

GSPN. A non-negative integer vector m 2 IN jPj called marking describes the number of tokens in

each place. Given a place pi 2 P, mi is the number of tokens in pi for marking m.

� T = ft1; . . . ; tjT jg is a �nite set of transitions, P \ T = ;.

� I � T is the subset of immediate transitions, drawn as thin bars, while X = T n I are the timed

transitions, drawn as rectangles. The �ring time of immediate transitions is zero, while that of

timed transitions is exponentially distributed.

� C� and C+ are incidence matrices of size jPj � jT j. Their elements are functions from IN jPj to

IN . C�

i;j(m) and C+
i;j(m) denote the marking-dependent integer cardinality assigned to the input

arc from pi to tj and the output arc from tj to pi respectively. In the graph, these arcs are drawn

using an arrowhead pointing to the destination if their cardinality is not identically equal to zero.

The cardinality function is indicated on the arc unless it is identically equal to one.

� m0 is the initial marking. In the graph, the value of m0
i is written inside place pi, if positive.

� For any tj 2 T , wj is a function from IN jPj to IR. wj(m) is the weight associated with transition

tj in marking m. According to whether tj is immediate or timed, this weight represents an

(unnormalized) �ring probability, or a �ring rate.
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A transition tj 2 T has concession in marking m i�

8pi 2 P; C
�

i;j(m) �mi; or C�

P;j(m) �m:

If any immediate transition has concession inm, it is enabled, andm is said to be vanishing. Otherwise,

m is said to be tangible and any timed transition tj with concession is enabled in m. In other words, a

timed transition is not enabled in a vanishing marking even if it has concession.

Some de�nitions of GSPNs allow one to disable a transition tj with concession in m by specifying a

zero weight wj(m) for it, or by introducing inhibitor arcs, drawn with a circle instead of an arrowhead.

In a markingm, an inhibitor arc from place pi to transition tj with cardinality c(m) disables tj if mi �

c(m). Since these behaviors can be represented by an appropriate de�nition of input arc cardinalities

in our formalism, we assume, without loss of generality, that wj(m) > 0 if tj is enabled in m, and we

use inhibitor arcs in our models merely as a shorthand.

Let E(m) denote the set of enabled transitions in marking m. An enabled transition tj �ring in

marking m yields a new marking n such that

8pi 2 P; ni =mi �C
�

i;j(m) +C+
i;j(m) =mi +Ci;j(m) (or n =m+CP;j(m));

where C = C+ �C� is the incidence matrix of the GSPN. We can also write m
tj
+n to express that tj

has concession in m and that n is obtained fromm by �ring tj, regardless of whether tj 2 E(m) or not

(tj is not enabled if it is timed and m is vanishing, or if wj(m) = 0).

The �ring probability of a transition tj enabled in marking m is

wj(m)P
tl2E(m)wl(m)

: (1)

If m is tangible, this corresponds to a race between the exponentially distributed �ring times of the

enabled transitions, with rates given byw. In a vanishing marking, instead, weights de�ne a probabilistic

choice, since the race model does not specify how to choose which transition to �re next when multiple

enabled transitions have the same zero �ring time.

2.3 Reachability set

The reachability set S is de�ned as the set of markings reachable from the initial marking m0 by �ring

any sequence of enabled transitions. Formally, S is the smallest subset of IN jPj containing m0 and such

that m 2 S, tj 2 E(m), and m
tj
+n imply n 2 S. Fig. 1 shows the skeleton of an algorithm to build the

set of reachable markings S (which we assume �nite from now on). Particular care must be placed on

the implementation of statement 9, since the size of the set S to be searched is very large in practice.

E�cient methods include hashing or balanced search trees (e.g., AVL trees [18]). While not explicitly

stated in the algorithm, S should be stored as the union of two disjoint sets, ST and SV , corresponding

to the tangible and vanishing markings, respectively.

A function 	 assigns an index to each reachable marking, according to a lexicographic order, indi-

cated by \�":

	 : S ! f0; . . . ; jSj � 1g such that 	(m) > 	(n) () m � n:
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Algorithm BuildRS (input: (P;T ;I;C�;C+;m0;w); output: S);

1. S  fm0g; /* S contains the markings found so far */

2. U  fm0g; /* U � S contains the found but unexplored markings */

3. while U 6= ; do

4. \choose a marking m from U";

5. U  U n fmg;

6. \compute E(m)";

7. for each j 2 E(m) do

8. n  m+CP;j(m);

9. if n 62 S then

10. U  U [ fng;

11. S  S [ fng;

12. end if

13. end for

14. end while

Figure 1: Algorithm BuildRS

If an AVL tree is used, 	 can be precomputed with a simple preorder visit of the tree, and its value can

be stored in the nodes of the tree. Then, givenm 2 IN jP j, the value k = 	(m) can be found in O(log jSj)

operations using the AVL tree augmented with this additional information (	(m) = \unde�ned" for

any m 62 S). The restrictions of 	 to the tangible and vanishing markings, can be de�ned accordingly:

	T : ST ! f0; . . . ; jST j � 1g and 	V : SV ! f0; . . . ; jSV j � 1g.

In the following, with a slight overloading in the notation, we use a marking m to index data

structures (vectors and matrices) referring to S, ST , or SV . Strictly speaking, we should use instead

	(m), 	T (m), and 	V (m), respectively, but this would make the expressions excessively cumbersome.

Nevertheless, it is important to stress this fundamental di�erence from a computational point of view;

�nding the index of a marking is a potential source of additional complexity in any structured approach.

2.4 Underlying continuous-time Markov chain and rewards

We focus on the steady-state analysis of the continuous-timeMarkov chain (CTMC) underlying a GSPN,

described by the in�nitesimal generator matrix Q 2 IRjST j�jST j, which we assume ergodic (and �nite,

since S is �nite):

Q = R�� = RT;T +RT;V (IjSV j �UV;V )
�1UV;T ��; (2)

where R is the transition rate matrix, � = rowsum(R), and RT;T and RT;V (UV;T and UV;V ) describe

the rates (probabilities) of going from tangible (vanishing) markings to tangible or vanishing markings,

respectively. The entry of RT;T (RT;V ) corresponding to the row for m and the column for n describes
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the rate from m 2 ST to n 2 ST (n 2 SV ):

X
tj2E(m);m

tj
+n

wj(m):

The entries ofUV;V andUV;T are de�ned analogously, using the �ring probability of immediate transition

tj, given by (1), instead of the weight wj(m). For a discussion of how to generate Q in practice, see

[2, 6].

We observe that �m;m =
P

tj2E(m)wj(m) is then the total rate leaving marking m 2 ST , and it

equals the inverse of hm, the expected holding time in m.

Let �m be the steady-state probability of a tangible marking m (vanishing markings have zero

probability). Then, the steady-state probability (row) vector � 2 IRjST j satis�es the balance equation

� �Q = 01�jST j subject to the normalization � � 1jST j�1 = 1: (3)

We can specify a quantity of interest for the GSPN using a reward structure (�; r), where �(m) is

the reward rate gained while the GSPN is in marking m, and rj(m) is the reward impulse gained when

transition tj 2 T �res in marking m. The expected reward rate in steady state is then

X
m2ST

�m�(m) +
X
m2S

X
tj2E(m)

�j;mrj(m); (4)

where �j;m is the rate at which transition tj �res in steady state in marking m. If we let � 2 IRjSj be

the vector describing the rate at which each marking is entered in steady state, �j;m is obtained as

�j;m = �m
wj(m)P

tl2E(m)wl(m)
:

For m 2 ST , �m = �m
P

tl2E(m)wl(m) = �m�m;m. For m 2 SV , instead,

�m =
X
n2ST

�n � Fn;m;

where, for n 2 ST and m 2 SV , the corresponding entry of matrix

F = RT;V (IjSV j �UV;V )
�1 2 IRjST j�jSV j (5)

describes the rate at which a vanishing marking m is entered after leaving a tangible marking n and

before reaching the next tangible marking. If no reward impulse is de�ned for immediate transitions,

then Eq. (4) reduces to X
m2ST

�m

0
@�(m) +

X
tj2E(m)

wj(m)rj(m)

1
A :

In this work, we consider the structure of both Q and F, and the computation of � and �.
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3 Kronecker expression for the CTMC underlying a GSPN

We now show how the ideas in [4, 5, 10, 11, 12] can be applied to individual places, not just to sub-

GSPNs. Our goal is to clarify the relationship between Kronecker algebra and GSPNs, while relaxing

several important restrictions on the type of interactions. Later we will merge individual places into

\macroplaces", which corresponds to the notion of sub-GSPNs.

3.1 Using the state spaces of individual places

The �rst extension regards the type of marking-dependency allowed in the GSPN. We allow the weight

of a transition to be expressed as the product of \local e�ects" due to the number of tokens in each

place:

8m 2 S;8tj 2 T ; C
�

P;j �m ) wj(m) = w�

j �
Y
pi2P

wi;j(mi); (6)

where w�

j can be interpreted as a constant \reference" weight, while the values wi;j are dimensionless

scaling functions [1]. This \independence of e�ects" in the marking dependence implies, for example,

that if markings m and n di�er only in the number of tokens in pi, and if tj is enabled in both,

wj(n) = wj(m) � wi;j(ni)=wi;j(mi). If a weight wj does not depend on the number of tokens in pi, we

assume, without loss of generality, that wi;j is identically equal to one. Note that we do not require the

weight wj(m) of a timed transition tj in a vanishing marking m to be zero. Doing so would make the

speci�cation of w for a given GSPN more di�cult in practice, and is not required by our approach.

Analogously, the dependence of the matrices C� and C+, hence C, is assumed to be of the form

8m 2 S;8pi 2 P;8tj 2 T ; C
?
i;j(m) = �?

i;j(mi); (7)

where \?" is one of \�", \+", or nothing, and �?
i;j is a function from IN to IN .

We can now state a theorem expressing the matrices Q and F of the CTMC underlying a GSPN in

terms of smaller matrices related to each place-transition pair.

Theorem 3.1 Consider a GSPN with �nite reachability set S satisfying Eq. (6) and (7),

and let ni�1 be the bound of place pi 2 P, that is, for anym 2 S;mi 2 f0; 1; . . .ni�1g = S i.

De�ne

R0 =
X
tj2X

w�

j �
O
pi2P

Wi;j U0 =
X
tj2I

w�

j �
O
pi2P

Wi;j; (8)

where Wi;j is a square matrix of size ni � ni whose entry in position (r; c), for r; c 2 S i, is

given by

Wi;j(r; c) =

(
wi;j(r) if r � ��i;j(r) and c = r + �i;j(r)

0 otherwise
:

Also, de�ne

�0 = rowsum(R0) =
X
tj2X

w�

j �
O
pi2P

rowsum(Wi;j) =
X
tj2X

w�

j �
O
pi2P

�i;j (9)
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� 0 = rowsum(U0) =
X
tj2I

w�

j �
O
pi2P

rowsum(Wi;j) =
X
tj2I

w�

j �
O
pi2P

� i;j (10)

and T0 = IjS0j � �(� 0). Then, the matrix

Q0 = R0 �
�
I� (T0 + � 0)�1 �U0

�
�1
��0 (11)

satis�es Q = Q0

ST ;ST
and F = Q0

ST ;SV
, where Q and F have the meaning de�ned in Eq. (2)

and (5).

Proof: Matrices with superscript \0" have row and column set S 0 =
n
0; 1; . . .

�Q
pi2P

ni
�
� 1

o
,

or S1�� � ��S jPj, if we identify a tuple with its mixed-base value. In the following, however,

we partition matrices and permute their rows and columns so that the markings appear in

lexicographic order within the sets ST , SV , and S 0 nS. This is for illustration purposes only.

First, we prove that

R0

m;n =

0
@X
tj2X

w�

j �
O
pi2P

Wi;j

1
A
m;n

=
X
tj2X

w�

j �
Y
pi2P

Wi;j
mi;ni

=
X

tj2X ;m
tj
+n

wj(m): (12)

Let's consider the contribution to this value for each timed tj 2 X , by doing a case analysis:

1. If m
tj
+n, the contribution should be wj(m). Indeed, for all pi 2 P;Wi;j

mi;ni
= wi;j(mi),

hence the contribution of tj is

w�

j �
Y
pi2P

wi;j(mi) = wj(m):

2. If tj does not have concession inm the contribution should be zero. Indeed, there must

exist a place pi such that mi < C�

i;j(m) = ��i;j(mi). This impliesWi;j
mi;ni

= 0, and the

contribution of tj is w�

j �
Q

pi2P
Wi;j
mi;ni

= 0.

3. If m
tj
+n0 6= n, the contribution of tj should be zero as well. Indeed, there must exist

a place pi such that ni 6= mi + Ci;j(m) = mi + �i;j(mi). Hence, Wi;j
mi;ni

= 0, and

w�

j �
Q

pi2P
Wi;j
mi;ni

= 0.

Thus, the contribution of each transition in the summation is correct. An analogous argu-

ment allows us to show that

U0

m;n =
X

tj2I;m
tj
+n

wj(m): (13)

From Eq. (12) and (13), we can conclude that U0

ST ;S
0 = 0, U0

SV ;S
0nS

= 0, R0

ST ;S
0nS

= 0, and

that the matrices RT;T , RT;V , UV;T , and UV;V for the underlying GSPN, with their rows

and columns ordered according to 	, can be expressed as:

RT;T = R0

ST ;ST
RT;V = R0

ST ;SV
UV;T = � 0�1

SV ;SV
�U0

SV ;ST
UV;V = � 0�1

SV ;SV
�U0

SV ;SV

(14)
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(the normalization � 0�1

SV ;SV
is required because the weights of the immediate transitions

enabled in a vanishing marking are not required to sum to one, while the entries in UV;T

and UV;V are probabilities). We can conclude � = �0

ST ;ST
as well.

Hence, letting \�" denote submatrices whose value is irrelevant,

�
I� (T0 + � 0)�1 �U0

�
�1

=

0
BB@I�

2
664
I 0 0

0 � 0�1

SV ;SV
0

� � �

3
775 �
2
664

0 0 0

U0

SV ;ST
U0

SV ;SV
0

� � �

3
775
1
CCA
�1

=

0
BB@I�

2
664

0 0 0

� 0�1

SV ;SV
U0

SV ;ST
� 0�1

SV ;SV
U0

SV ;SV
0

� � �

3
775
1
CCA
�1

=

2
664

I 0 0

�� 0�1

SV ;SV
U0

SV ;ST
I� � 0�1

SV ;SV
U0

SV ;SV
0

� � �

3
775
�1

=

2
664

I 0 0

�UV;T I�UV;V 0

� � �

3
775
�1

=

2
664

I 0 0

(I�UV;V )�1UV;T (I�UV;V )�1 0

� � �

3
775

Substituting this value in the de�nition of Q0 given in Eq. (11) completes the proof:

Q0 =

2
664
R0

ST ;ST
R0

ST ;SV
0

� � �

� � �

3
775 � �I� (T0 + � 0)�1 �U0

��1

�

2
664
�0

ST ;ST
0 0

� � �

� � �

3
775

=

2
664
RT;T RT;V 0

� � �

� � �

3
775 �
2
664

I 0 0

(I�UV;V )�1UV;T (I�UV;V )�1 0

� � �

3
775�

2
664
� 0 0

� � �

� � �

3
775

=

2
664
RT;T +RT;V (I�UV;V )�1UV;T �� RT;V (I�UV;V )�1 0

� � �

� � �

3
775

=

2
664
Q F 0

� � �

� � �

3
775 2

If the number of tokens in pi is always at least mi > 0, we can, of course, de�ne S i = fmi; . . . ; ni�1g

or, equivalently, change the de�nition of the GSPN so that the range of tokens in pi becomes S i =

f0; . . . ; ni�mi � 1g. This would not a�ect the proofs in this paper, but could improve the e�ciency of

the implementation.
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(b)(a)

t1 t2

t4

p1

p2

t3

p3

100 011010
t1 t2

t3 t4

101

t1

Figure 2: A case where m
tj
+n, n 2 S, but m 62 S.

It is important to stress that R0

S0nS;S0 and U
0

S0nS;S0 cannot be guaranteed to be zero (nor can R0

SV ;S
0,

but this is because we allow timed transitions to have concession in vanishing markings). We now

formalize this observation, already implicit in previous works using the Kronecker approach, since it is

fundamental for a better understanding of the nature of the matrices R0 and U0.

Lemma 3.1 The matrices R0 and U0 de�ned in Theorem 3.1 satisfy the following \forward

reachability condition":

m 2 ST ^ R0

m;n > 0 ) n 2 S and m 2 SV ^ U0

m;n > 0 ) n 2 S (15)

However, the analogous \backward reachability condition" does not hold:

n 2 S ^R0

m;n > 0 6) m 2 ST and n 2 S ^U0

m;n > 0 6) m 2 SV (16)

Proof: It is straightforward to show that Eq. (15) holds when the premises of Theorem 3.1

are satis�ed. We simply need to observe that, given the de�nition of R0, R0

m;n > 0 and

m 2 ST imply that there is a transition tj 2 E(m) and that its �ring leads to n; thus, n is

reachable. An analogous reasoning holds for U0 andm 2 SV . To show that Eq. (16) holds, it

is su�cient to give an example; we do so forR0. Consider the GSPN in Fig. 2, having positive

�nite transition rates. The �ring of two transitions t2, t3 could lead to n = h0; 1; 1i: by t2,

from marking h1; 0; 0i, and by t1, from marking h1; 0; 1i. In our notation, n1 = n2 = n3 = 2,

W1;1 =

"
0 0

1 0

#
W2;1 =

"
0 1

0 0

#
W3;1 =

"
1 0

0 1

#
:

Thus, the contribution of t1 to R0

101;011 is w
�

1 �W
1;1
1;0 �W

2;1
0;1 �W

3;1
1;1 = w�

1 > 0, henceR0

101;011 > 0.

However, given the initial marking,m0 = h1; 0; 0i, the markingm = h1; 0; 1i is not reachable.

2

Theorem 3.1 gives a characterization of the in�nitesimal generator Q and of the matrix F of a GSPN

by focusing on the e�ect of each transition on each place. An alternative statement of this theorem, is,

10



(b)(a)

t1p1
n

tk-1 tkpk t1p1 tk-1 tkpkt0

n1-1 nk-1

Figure 3: A GSPN where jST j � jS 0j, and one where jSj = jS 0j.

of course,

Q = R0

ST ;ST
+R0

ST ;SV

�
IjSV j � �

0�1

SV ;SV
�U0

SV ;SV

�
�1

U0

SV ;ST
��0

ST ;ST

F = R0

ST ;SV

�
IjSV j � �

0�1

SV ;SV
�U0

SV ;SV

��1

:

In either form, however, this result has little practical value in itself, since both expressions contain

an inverse which cannot be expressed using Kronecker operators on smaller matrices. One case where

Theorem 3.1 has a direct application is when there are no immediate transitions. Then, ST = S, SV = ;,

and Eq. (2) simpli�es to Q = R�� = RT;T �� = R0

ST ;ST
��0

ST ;ST
.

However, a solution approach based on this idea alone has limitations, due to the restrictions that

the GSPN must satisfy. Even more importantly, though, the size of Q0 is enormous, potentially leading

to ine�ciencies. Consider for example the GSPN in Figure 3(a), having positive �nite transitions rates.

If the initial marking contains a total of n tokens,

jSj =

 
n+ k � 1

n

!
� jS 0j = (n+ 1)k:

From the simple case when n = 1, it is apparent that the di�erence, k vs. 2k, can be enormous. For

this type of closed networks, Buchholz [4] suggested a solution method based on Kronecker algebra

that does not create unreachable states, applicable when the interaction between submodels is of the

asynchronous type described in the introduction.

On the other hand, it is possible for S to equal S 0. This happens, for example, in a live free-

choice GSPN with capacities whose undirected graph obtained by ignoring arc directions is acyclic

(this is a generalization of [13, Property 3], which refers, however, to unbounded marked graphs).

Another example is that of open acyclic queueing networks with communication blocking due to bounded

bu�ers [17] which could be named \open state machines with capacities" in Petri net terminology. The

transitions in these nets have at most one input and one output place and, if capacities were removed,

every place would become unbounded. See the GSPN in Figure 3(b) for a simple example of a tandem

network. Indeed, when S 0 = ST , 	T (m) is simply the mixed-base value of m, hence 	�1
T (k) does not

have to be stored explicitly. Unfortunately, such a situation is rare.

11



3.2 Merging places into macroplaces

The type of marking dependence expressed by Eq. (6) and (7) is quite general, but for example, it does

not let us specify a �ring rate proportional to a nonlinear function of several places (e.g., minfm1;m2g).

We now show how this limitation can be overcome in practice by merging places (p1 and p2, in our

example).

Consider a GSPN A = (P;T ;I;C�;C+;m0;w) with �nite reachability set S, and partition P into

P̂ = fP̂1; . . . P̂jP̂jg, where P̂i = fpi1 ; . . . pijP̂i j
g. Then, de�ne an order-preserving bijection 
 : S ! Ŝ �

IN jP̂j



�
m1; . . . ;mjPj

�
=
�
m̂1; . . . ; m̂jP̂j

�
satisfying 
(m) � 
(n) () m � n; (17)

where m̂i is the position, in lexicographic order, of (mi1; . . . ;mi
jP̂ij

) in the set obtained by projecting S

over P̂i.

Lemma 3.2 Given A, P̂; and 
 de�ned as above, consider the \compacted" GSPN

Â = (P̂; T̂ = T ; Î = I; Ĉ�; Ĉ+; m̂0 = 
(m0); ŵ);

where the input and output arc cardinalities are de�ned to ensure that, in corresponding

markings m and 
(m) = m̂, tj 2 T has concession in Â i� it has concession in A and that,

in this case, m̂
tj
+n̂ = 
(n) in Â i� m

tj
+n in A , while the weights for tj are de�ned to have

the same value in corresponding markings:

� If tj 2 E(m) and its �ring does not change the marking of any place in P̂i, that is, if

8pl 2 P̂i : C
�

l;j(m) �ml ^C
�

l;j(m) = C+
l;j(m), de�ne Ĉ�

i;j(m̂) = Ĉ+
i;j(m̂) = 0.

� If tj 2 E(m) and its �ring changes the marking of some place(s) in P̂i, that is, if

8pl 2 P̂i : C�

l;j(m) � ml ^ 9pl 2 p̂i; C
�

l;j(m) 6= C+
l;j(m), de�ne Ĉ�

i;j(m̂) = m̂i and

Ĉ+
i;j(m̂) = n̂i.

� Otherwise, tj is disabled in m, that is, 9pl 2 P̂i; C
�

l;j(m) >ml; then, de�ne Ĉ
�

i;j(m̂) =

m̂i + 1, while the value of Ĉ+
i;j(m̂) is irrelevant.

� De�ne ŵj(m̂) = wj(m).

Then, the transition rate matrices R and R̂, de�ned by A and Â, respectively, are identical.

Proof: Omitted for brevity (it is su�cient to show that the stochastic processes described

by A and Â are identical). 2

Lemma 3.2 allows us to compact an arbitrary set of places into a single place, which, together

with the transitions connected to it, corresponds to a sub-GSPN of [11, 12]. This operation must be

performed when the marking dependencies in the GSPN are not of the type allowed by Theorem 3.1.

It might be performed, even when the theorem is applicable, to reduce the number of matrices involved

in the description of R at the cost of increasing their size.

From now on, macroplaces are indicated as dashed boxes surrounding sets of places; the compacted

GSPNs are not shown explicitly, since they would not add to the comprehension of the model.
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4 Timed synchronizing transitions

The contributions in [4, 5, 11, 12] have assumed that the GSPN is decomposed in such a way that each

iteration of the solution method performs Kronecker products of few large (but manageable) matrices,

while Theorem 3.1 uses many (jT j � jPj) small (ni � ni) matrices.

Lemma 3.2 addresses the size issue: we can merge places, thus obtaining jT j � jP̂j larger matrices. In

this section, we show how the number of matrices involved can be further reduced by merging transitions,

or rather, the corresponding matrices. The results are similar to those derived by previous authors, who

assumed all synchronizing transitions are timed, but we present them here for three reasons. First,

we exhibit substantially di�erent proofs for these results; [4, 5, 11, 12] consider a set of sub-GSPNs

and combine them using synchronizing transitions, thus Kronecker operators are introduced only at

the last step. Instead, we start from the Kronecker expression of Theorem 3.1 for the entire GSPN

and derive our results by exploiting the properties of Kronecker operators. Second, our results include

the management of immediate transitions and vanishing markings, while previous works have simply

assumed that these are eliminated locally using the traditional approach. Finally and most importantly,

our result apply to a larger class of GSPNs, since a more general marking-dependent behavior is allowed

by Theorem 3.1.

4.1 Partitioning the set of transitions

Without loss of generality, we assume from now on that each transition in T has at least one input or

one output place: 8tj 2 T ;9pi 2 P; C
�

i;j 6� 0 _ C+
i;j 6� 0. Then, let T i � T be the set of \local"

transitions which a�ect, or are a�ected by, only a single place pi:

8pi 2 P : T i =
n
tj 2 T j 8pl 2 P; pl 6= pi; C

�

l;j � C
+
l;j � 0 ^ wl;j � 1

o
; (18)

and T � = T n
S
pi2P
T i be the set of synchronizing transitions which instead a�ect or are a�ected by at

least two places. Clearly, these sets constitute a partition of T . Also, let X � = T � \ X , I� = T � \ I,

X i = T i \ X , and I i = T i \ I.

Lemma 4.1 Consider a GSPN satisfying the requirements of Theorem 3.1. Then,

R0 =
X

tj2X �

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ri ; U0 =
X
tj2I�

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ui; (19)

�0 =
X

tj2X �

w�

j �
O
pi2P

�i;j +
M
pi2P

�i ; � 0 =
X
tj2I�

w�

j �
O
pi2P

� i;j +
M
pi2P

� i; (20)

where Ri, Ui, �i, and � i are square matrices of size ni � ni de�ned as

Ri =
X
tj2X

i

w�

j �W
i;j ; Ui =

X
tj2I

i

w�

j �W
i;j ; �i =

X
tj2X

i

w�

j ��
i;j ; � i =

X
tj2I

i

w�

j ��
i;j :

Hence, as special cases, Ri = �i = 0 if X i = ; and Ui = � i = 0 if I i = ;.
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Proof: We only prove the result for R0, the proof for the other matrices is analogous. Given

the condition speci�ed by Eq. (18), we know that Wl;j = Inl if pi 6= pl and tj 2 T
i. Then,

the proof is a simple matter of matrix manipulation within the Kronecker expressions:

R0 =
X
tj2X

w�

j �
O
pi2P

Wi;j

=
X

tj2X �

w�

j �
O
pi2P

Wi;j +
X
pi2P

X
tj2X i

w�

j �
O
pl2P

Wl;j

=
X

tj2X �

w�

j �
O
pi2P

Wi;j +
X
pi2P

X
tj2X i

w�

j � In1 
 � � � 
 Ini�1 
W
i;j 
 Ini+1 
 � � � 
 InjPj

=
X

tj2X �

w�

j �
O
pi2P

Wi;j +
X
pi2P

In1 
 � � � 
 Ini�1 


0
@ X
tj2X

i

w�

j �W
i;j

1
A
 Ini+1 
 � � � 
 InjPj

=
X

tj2X �

w�

j �
O
pi2P

Wi;j +
X
pi2P

In1 
 � � � 
 Ini�1 
R
i 
 Ini+1 
 � � � 
 InjPj

=
X

tj2X �

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ri: 2

This partition reduces the number of Kronecker product terms from jX j to jX �j in R0 and from jIj to

jI�j in U0, respectively, and adds one Kronecker sum to both. Transitions satisfying Eq. (18) arise after

applying Lemma 3.2, that is, after \decomposing" a large GSPN into several smaller sub-GSPNs. Each

sub-GSPN corresponds, in our terminology, to a (macro)place, plus the set of transitions local to it.

This transformation does not have to be explicitly performed in practice, only its result, the matrices

corresponding to the set of macroplaces, need to be computed. A good partition of the places results

in a compacted GSPN where most transitions are local and the number of tokens in each compacted

place (number of markings in the sub-GSPN, in the terminology of [11, 12]), is manageable. Methods

to determine a good partition are beyond the scope of this paper and are left for future research.

4.2 An e�cient Kronecker expression for the CTMC

Given any GSPN, we can always apply Lemma 3.2, resulting in a compacted GSPN satisfying the

requirements of Theorem 3.1, then apply Lemma 4.1. If the partition is such that all immediate

transitions are local, we can then restate the main results of [11, 12] in a more general setting.

Theorem 4.1 Consider a GSPN satisfying the same requirements as for Theorem 3.1, and

such that all immediate transitions are local:

I
� = ; ) U0 =

M
pi2P

Ui; T
� = X �: (21)

Then

Q00 =
X

tj2X
�

w�

j �
O
pi2P

�
Wi;j �Xi

�
+
M
pi2P

�
Ri �Xi

�
��0;
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where

Xi =
�
Ini � (Ti + � i)�1Ui

�
�1

� i = rowsum(Ui) Ti = Ini � �(� i);

satis�es Q00

ST ;ST
= Q, with the meaning de�ned in Eq. (2).

Proof: First, we observe that condition Eq. (21) implies � 0 =
L

pi2P
� i and T0 =

N
pi2P

Ti.

In other words, a \global" marking m is tangible i� all its \local" components are tangible.

We can then manipulate Q00 as follows:

Q00 =
X

tj2X �

w�

j �
O
pi2P

�
Wi;j �Xi

�
+
M
pi2P

�
Ri �Xi

�
��0

=
X

tj2X
�

w�

j �
O
pi2P

Wi;j �
O
pi2P

Xi +
M
pi2P

Ri �
O
pi2P

Xi +
M
pi2P

�
Ri �Xi

�
�
M
pi2P

Ri �
O
pi2P

Xi

| {z }
D0

��0

=

0
@ X
tj2X �

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ri

1
A � O

pi2P

Xi +D0 ��0

= R0 �
O
pi2P

Xi +D0 ��0

Partition S i into S iT and S iV , corresponding to local markings enabling only timed local

transitions, or some immediate local transition, respectively, and rearrange the rows and

columns of X i accordingly:

Xi =
�
Ini � (Ti + � i)�1Ui

�
�1

=

"
IiT;T 0

Pi
V;T Ni

V;V

#
;

where the subscripts \T; T", \V; T", and \V; V " have the usual meaning, but applied to the

local matrix for place i. Ni
V;V =

�
Ii
SV ;SV

� (� i
SV ;SV

)�1 �Ui
SV ;SV

�
�1

describes the expected

number of visits to each local vanishing marking before reaching a local tangible marking,

starting from each each local vanishing marking, while Pi
V;T =Ni

SV ;SV
� (� i

SV ;SV
)�1 �Ui

SV ;ST

describes the probability of reaching each local tangible marking, starting from each local

vanishing marking.

We continue assuming that jPj = 2, the general proof follows exactly the same idea. Local

matrices are partitioned according to whether the corresponding local markings are tangi-

ble or vanishing (regardless of whether the global markings are reachable or not). Global

matrices are partitioned according to the following order: tangible states, vanishing states

enabling only immediate transitions in T 2, vanishing states enabling only immediate transi-

tions in T 1, and vanishing states enabling immediate transitions in both T 1 and T 2. First,

we show that the tangible rows of D0 are zero:

D0 = (R1X1 �R2X2)� (R1 �R2)(X1 
X2)

= R1X1

 In2 + In1 
R

2X2
�R1X1


X2
�X1


R2X2
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01: p1p4

11: p3p4

t2:2

(a)

00: p1p2

10: p3p2

t3:b

t1:a t5:c

t4:3

t2:2

t4:3p1

p3

p2

p4

t5t1
t2 t4t3

0: p1 0: p2

1: p3 1: p4

t1:a t4:3t2:2 t3:bt5:c

(b) (c)

Figure 4: A GSPN to illustrate the di�erence between Q0 and Q00.

= R1X1 
 (In2 �X
2) + (In1 �X

1)
R2X2

= R1X1 


"
0 0

� �

#
+

"
0 0

� �

#

R2X2

=

2
66664
0 0 0 0

� � � �

� � � �

� � � �

3
77775 ; (22)

since Xi and Ini have the same tangible rows. Then, we show that the tangible columns ofN
pi2P

Xi and (I� (T0 + � 0)�1U0)
�1

coincide:

X1 
X2 =

"
I1T;T 0

P1
V;T N1

V;V

#



"
I2T;T 0

P2
V;T N2

V;V

#

=

2
66664
I1T;T 
 I

2
T;T 0 0 0

I1T;T 
P
2
V;T I1T;T 
N

2
V;V 0 0

P1
V;T 
 I

2
T;T 0 N1

V;V 
 I
2
T;T 0

P1
V;T 
P

2
V;T P1

V;T 
N
2
V;V N1

V;V 
P
2
V;T N1

V;V 
N
2
V;V

3
77775 : (23)

The blocks in the �rst (tangible) column of this last matrix contain the correct values,

since the top left block is simply the identity and the other blocks correctly describe the

probabilities of reaching tangible markings from vanishing markings, which are the values

in the corresponding blocks of (I� (T0 + � 0)�1U0)
�1
: From Eq. (22) and (23) we can then

conclude that Q00

ST ;ST
= Q, as in the proof of Theorem 3.1. 2.

In practice, Theorem 4.1 is used to generate only the relevant portion of Q00 in the numerical solution

method. In other words, we eliminate the vanishing markings \on the 
y" (as in [4, 5, 10, 11, 12])

Q = Q00

ST ;ST
=

X
tj2X �

w�

j �
O
pi2P

�
Wi;j �Xi

�
T;T

+
M
pi2P

�
Ri �Xi

�
T;T

�

0
@ X
tj2X

�

w�

j �
O
pi2P

�
i;j
T;T +

M
pi2P

�i
T;T

1
A :
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We observe that both Q0 and Q00 describe Q, but the two normally di�er. For example, consider the

GSPN in Fig. 4, having a single tangible state and three vanishing states (the example is trivial, but it

is su�cient to illustrate the point). Assuming that the rates of timed transitions t1, t3, and t5 are a, b,

and c, respectively, and that the weights of transitions t2 and t4 are 2 and 3:

R1 =

"
0 a

0 0

#
R2 =

"
0 b

0 0

#
W1;5 =

"
0 1

0 0

#
W2;5 =

"
0 1

0 0

#
U1 =

"
0 0

2 0

#
U2 =

"
0 0

3 0

#
:

From which we obtain

W1 =

"
0 0

0 2

#
W2 =

"
0 0

0 3

#
T1 =

"
1 0

0 0

#
T2 =

"
1 0

0 0

#
X1 =

"
1 0

1 1

#
X2 =

"
1 0

1 1

#

and

R0 =

2
66664
0 b a c

0 0 0 a

0 0 0 b

0 0 0 0

3
77775 T0 =

2
66664
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
77775 U0 =

2
66664
0 0 0 0

3 0 0 0

2 0 0 0

0 2 3 0

3
77775 � 0 =

2
66664
0 0 0 0

0 3 0 0

0 0 2 0

0 0 0 5

3
77775 :

The resulting Q0 and Q00 matrices are then di�erent:

Q0 =

2
66664
a+ b+ c b+ 2

5
c a+ 3

5
c c

a 2

5
a 3

5
a a

b 2

5
b 3

5
b b

0 0 0 0

3
77775��0 Q00 =

2
66664
a+ b+ c b+ c a+ c c

0 a 0 a

0 0 b b

0 0 0 0

3
77775��0:

Indeed, the di�erence between Q0 and Q00 is already apparent from Eq. (23). The diagonal blocks

I1T;T 
N
2
V;V and N1

V;V 
 I
2
T;T correctly describe the expected number of times the corresponding global

vanishing markings (enabling only local immediate transitions in T 2 or T 1, respectively) are entered,

given that a timed transition �ring leads to the corresponding diagonal block. However, the last three

blocks on the bottom row do not re
ect the same quantities when a timed transition �ring leads to

vanishing markings enabling immediate transitions in both T 1 and T 2. In particular, P1
V;T 
 N

2
V;V

describes the correct quantity only if we could assume that all enabled immediate transitions in T 1 keep

�ring before any of those in T 2 do, which is not necessarily the case, while N1
V;V 
 P

2
V;T assumes the

opposite. Finally, N1
V;V 
N

2
V;V does not re
ect the number of times global markings are entered at all.

This leads us to the following observation.

Corollary 4.1 If the GPSN of Theorem 4.1 is such that the �ring of any timed (synchro-

nizing) transition tj 2 X
� enables (local) immediate transitions in at most one set T i, for

some pi 2 P, then Q00

ST ;SV
= F, as de�ned in Eq. (5).

Proof: The condition for this corollary implies

SV �
[
pi2P

S
1
T � � � � � S

i�1
T � S

i
V �S

i+1
T � � � � � S

jPj

T :
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As discussed in Theorem 4.1, the blocks on the columns corresponding to this type of vanish-

ing markings are computed correctly in
N

pi2P
Xi, see Eq. (23). The bottom rows of Eq. 23,

corresponding to any (unreachable) vanishing markings m enabling immediate transitions

in more than one set T i, are irrelevant, since Lemma 3.1 guarantees that R0

ST ;m
= 0 in this

case. 2

5 Immediate synchronizing transitions

If some of the synchronizing transitions are immediate, Theorem 3.1 still applies, but Theorem 4.1,

which allows the e�cient computation of the solution in practice, does not. In this section, we show

how \preservation of the vanishing markings" [8] can be used to remove this limitation, also present in

[11, 12].

5.1 Embedding a DTMC

First, we summarize the main ideas in [8], which examines an alternate method to compute �:

� De�ne the transition probability matrix P of the embedded DTMC, expressing the probability of

going, in one �ring, from any marking m 2 S to any other marking n 2 S, regardless of whether

they are tangible or vanishing:

P =

"
��1RT;T ��1RT;V

UV;T UV;V

#
: (24)

� Compute the steady-state probability vector 
 2 IRjSj of the embedded DTMC:


 �P = 
 subject to the normalization 
 � 1jSj�1 = 1: (25)

� Obtain both � and � from 
, using the holding times in the tangible markings as weights:

8m 2 ST ; �m =

m � hmP
n2ST 
n � hn

and 8m 2 S; �m =

mP

n2ST 
n � hn
: (26)

The correctness of the method can be veri�ed by observing that, from

[
T j 
V ] �

"
��1RT;T ��1RT;V

UV;T UV;V

#
= [
T j 
V ];

we can obtain 
V = 
T�
�1RT;V (I�UV;V )

�1, and, substituting it in the above equation,


T�
�1| {z }

��

�

T ��

�1
�1jSj�1

� �
�
RT;T +RT;V (I�UV;V )

�1
UV;T

�
| {z }

Q

= 0:
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We can then divide both sides of the equation by the constant 
T ��
�1 � 1jSj�1, resulting in � �Q = 0.

In [8], it was found that the solution time is often greater than with the \elimination" approach

based on Eq. (3). This is due to the number of nonzero entries in P, normally larger than in Q, and,

frequently, to a slower numerical convergence. However, pathological cases where P has substantially

fewer entries than Q arise when N tangible markings can reach a small set of vanishing markings, which

can, in turn reach M tangible markings. This \N -to-M switch" behavior corresponds to O(N +M)

arcs in P and O(N �M) in Q, hence it a�ects the elimination approach negatively both in terms of

storage and execution time, although the number of iterations in the numerical solution might still be

smaller with elimination. The use of preservation results in the following analog of Theorem 3.1.

Theorem 5.1 Under the same conditions of Theorem 3.1, the matrix

P0 = (T0 ��0 + � 0)�1 � (T0 �R0 +U0) (27)

satis�es P0

S;S = P, as de�ned in Eq. (24).

Proof: The pre-multiplication of �0 and R0 by T0 eliminates the e�ect of timed transitions

having concession in vanishing markings. However, if we focus on the reachable states, the

statement of the theorem is equivalent to saying that

P =

"
�0

ST ;ST

�1
�R0

ST ;S

� 0

SV ;SV

�1
�U0

SV ;S

#
: (28)

This equality then follows from the de�nition of P and the meaning of R0 and U0 already

established in Theorem 3.1. Eq. 28 is, of course, the expression used in practice for a

numerical solution. 2

The e�ciency of a solution based on Eq. (28) is improved by exploiting the existence of local

transitions (Lemma 4.1):

P =

2
66666664

0
@ X
tj2X

�

w�

j

O
P2P

�i;j +
M
pi2P

�i

1
A
�1

ST ;ST

�

0
@ X
tj2X

�

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ri

1
A
ST ;S0

@ X
tj2I

�

w�

j �
O
pi2P

� i;j +
M
pi2P

� i

1
A
�1

SV ;SV

�

0
@ X
tj2I

�

w�

j �
O
pi2P

Wi;j +
M
pi2P

Ui

1
A
SV ;S

3
77777775
; (29)

since this expression for P reduces the number of Kronecker products to be performed at each iteration.

5.2 Using partial elimination to improve solution e�ciency

A disadvantage of the approach just described is that the size of the probability vector 
 for the DTMC

is now jSj, considerably larger than jST j in many practical models. Analogously, the size of the matrices

for place i is given by the projection of S onto its i-th component, S i = fl : 9m 2 S;mi = lg, regardless

of whether markings satisfying mi = l are vanishing or tangible.
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It was already observed in [8] that it is possible to eliminate a subset of the vanishing markings,

preserving only those involved in large switches, in the hope of achieving the best memory{execution

tradeo�. We can exploit the same idea in our approach, but for a di�erent purpose. Partition the local

state space for place i, S i, into

� S iT = fl : 8m 2 ST ;mi = lg, the set of local tangible markings.

� S iS = fl : 9m 2 SV ;mi = l ^ I� \ E(m) 6= ;g, the set of possibly synchronized local vanishing

markings.

� S iL = fl : 8m 2 SV ;mi = l ) I� \ E(m) = ;g, the set of non-synchronized local vanishing

markings.

Any immediate synchronizing transition can be enabled only in markings having components in S iT [S
i
S ,

that is, in SS = SV \
�
(S1T [ S

1
S)� � � � � (S

jPj

T [ S
jPj

S )
�
.

We now de�ne a \partially eliminated" (or \partially preserved") DTMC with transition probability

matrix ~P and state space SK = ST [SS , (K stands for `keep") which can be used to compute � and �

more e�ciently than from P. Partition the matricesWi;j, Ri, Ui, �i;j, � i;j, �i, and � i, according to

the sets S iK = S iT [ S
i
S and S iL. For example,

Ri =

"
Ri

K;K Ri
K;L

Ri
L;K Ri

L;L

#
:

Then, assuming that the rows
h
Ui

L;KjU
i
L;L

i
are already normalized (this can be easily enforced since

each Ui is built before starting the overall solution), de�ne the matrices

~Wi;j = W
i;j
K;K +Wi;j

K;L �
�
I�Ui

L;L

�
�1
�Ui

L;K;

~Ri = Ri
K;K +Ri

K;L �
�
I�Ui

L;L

��1

�Ui
L;K; and

~Ui = Ui
K;K +Ui

K;L �
�
I�Ui

L;L

�
�1

�Ui
L;K:

Given this de�nition, the blocks for the rows and columns of SK in �i;j, � i;j, �i, and � i still contain

the correct row sums for the corresponding \~" matrices. Then, we can state our �nal theorem, which

allows the e�cient solution of a structured GSPN with immediate synchronizing transitions.

Theorem 5.2 Under the same conditions of Theorem 3.1, de�ne the transition probability

matrix

~P =

2
66666664

0
@ X
tj2X

�

w�

j

O
pi2P

�
i;j
K;K +

M
pi2P

�i
K;K

1
A
�1

ST ;ST

�

0
@ X
tj2X

�

w�

j �
O
pi2P

~Wi;j +
M
pi2P

~Ri

1
A
ST ;SK0

@ X
tj2I

�

w�

j �
O
pi2P

�
i;j
K;K +

M
pi2P

� i
K;K

1
A
�1

SS;SS

�

0
@ X
tj2I

�

w�

j �
O
pi2P

~Wi;j +
M
pi2P

~Ui

1
A
SS ;SK

3
77777775
;

(30)
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and solve for ~
 � ~P = ~
 subject to the normalization ~
 � 1jSKj�1 = 1. Then, the steady-state

probability and the rate of entering the markings in SK are

8m 2 ST ; �m =
~
m � hmP
n2ST

~
n � hn
; 8m 2 SK; �m =

~
mP
n2ST

~
n � hn
:

Proof: We only need to show that ~P correctly describes the DTMC obtained when embed-

ding the GSPN at the times when markings in ST [SS , but not those in SL = S n (ST [SS ),

are entered. In other words, ~
 should di�er from 
K only by a multiplicative constant,

where [
K j 
L] = 
 is the solution to Eq. 25, which, in block form, is

[
Kj
L]

"
PK;K PK;L

PL;K PL;L

#
= [
K j
L]:

We can then obtain 
L = 
K �PK;L � (I�PL;L)
�1 and, by substitution,


K �
�
PK;L � (I�PL;L)

�1
�PL;K +PK;K

�
= 
K :

Then, it is su�cient to show that
�
PK;L � (I�PL;L)

�1
�PL;K +PK;K

�
and ~P coincide. For

any m;n 2 SK , (PK;K)m;n represents the probability of going from marking m 2 SK to

marking n 2 SK in a single �ring, while (PK;L � (I�PK;K)�1 �PL;K)m;n represents the

probability of going from m to any marking m1 2 SL, visiting any number of markings in

SL, and �nally leaving SL from some marking m2 (possibly the same as m1) to reach n in

one �ring.

Assuming that m 2 ST and n di�ers from m in at most the position for place pl, the

corresponding entry ~Pm;n is

~Pm;n =

0
@ X
tj2X �

w�

j

O
pi2P

�
i;j
K;K +

M
pi2P

�i
K;K

1
A
�1

m;m

�

0
@ X
tj2X �

w�

j �
O
pi2P

~Wi;j +
M
pi2P

~Ri

1
A
m;n

= ��1
m;m �

0
@ X
tj2X

�

w�

j �
Y
pi2P

~Wi;j
mi;ni

+ ~Rl
ml;nl

1
A

= ��1
m;m �

0
B@ X
tj2X

�

w�

j �
Y
pi2P

0
B@Wi;j

mi;ni
+

X
m1

i
2S

i
L

W
i;j

mi;m1
i

X
m2

i
2S

i
L

�
I�Ui

L;L

�
�1

m1
i
;m2

i

Ui
m2

i ;ni

1
CA

+

0
B@Rl

ml;nl
+

X
m1

l
2S

l
L

Rl
ml;m

1
l

X
m2

l
2S

l
L

�
I�Ul

L;L

��1

m1
l
;m2

l

Ul
m2

l
;nl

1
CA
1
CA

(if n and m di�er in more than one position, the cause must be the �ring of a synchronizing

transition, so the \local term" for place pl in the last expression is absent). In any case,

��1
m;m is just a normalization factor (if m 2 SS, �

�1
m;m would be used instead), so the

expression indicates the required probability. The key issue is that the order of �ring of
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Figure 5: A GSPN with an immediate synchronizing transition.

local immediate transitions does not a�ect the probability of reaching a given n 2 SK, since

their weights and disabling are decided locally: the events \going from m1
i to ni" for each

pi are independent, so their product correctly describes the overall probability of going from

m1 to n. 2

We stress that our approach might not eliminate every vanishing marking enabling only local imme-
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diate transitions. For example, consider the GSPN in Fig. 5(a). We have S1T = fh0i; h2ig, S1S = fh1ig,

S1L = ;, S2T = fh0ig, S2S = fh1ig, and S2L = fh2ig, as shown in Fig. 5(b). After eliminating the local

markings S2L from the second sub-GSPN, we obtain the \local reachability graphs" in Fig. 5(c). Fig.

5(d), 5(e), and 5(f) show the graphs describing P0, P, and ~P, respectively. The dotted arcs in Fig. 5(d)

correspond to timed transitions with concession in vanishing markings, which lead to markings in S 0.

These are not present in P0. Hence, (global) marking h1; 2i is unreachable and is absent in P and ~P.

Furthermore, markings h0; 2i and h2; 2i are absent from ~P, because their second component, 2, enables

only local immediate transitions in the second sub-GSPN, h2i 62 S2S . However, marking h1; 0i is still

present in ~P, even if it enables only t3, a local immediate transition. This is because its �rst compo-

nent, 1, corresponds to having a token in p3, which is a condition for the enabling of the synchronizing

immediate transition t7. In other words, we cannot eliminate the local marking h1i from the local state

space for the �rst sub-GSPN, because this would eliminate both global markings h1; 0i and h1; 1i, and

eliminating h1; 1i would make it impossible to capture the e�ect of synchronizing transition t7 in the

Kronecker products of Eq. (30).

6 Numerical solution

Applying Theorem 4.1, we use the generator matrixQ = Q00

ST ;ST
to compute the stationary distribution

� 2 IRjST j of the CTMC underlying the GSPN according to Eq. (3). We use an approach based

on Kronecker algebra to avoid storing Q explicitly, so only iterative methods which do not require the

modi�cation of Q itself can be used e�ectively. Adopting the Jacobi method with overrelaxation (JOR),

we transform Q into the iteration matrix M = (1 � !) � I + ! �R � diag(h) and solve the eigenvector

problem:

� �M = � subject to � � 1jST j�1 = 1:

Successive approximations of � are obtained iteratively as

�[m+1]  �[m] �M; (31)

starting from an initial probability vector �[0] satisfying �[0] � 0 and �[0]1jST j�1 = 1. If the CTMC is

ergodic and if the iterations converge, JOR is guaranteed to result in the correct solution, regardless

of the value of �[0], that is, � = limm!1 �
[m], if this limit exists. We do not discuss the choice of the

relaxation parameter !, 0 < ! � 2, which a�ects the convergence rate [16]; for a detailed analysis of

numerical techniques for the solution of Markov chains, see [15].

We then need to multiply a full vector, �[m], by a matrix, R, which is described as a (submatrix of

a) Kronecker expression of smaller matrices,

R =

0
@ X
tj2X

�

w�

j �
O
pi2P

W
i;j
+
M
pi2P

R
i

1
A
ST ;ST

;

where R
i
= Ri �Xi and W

i;j
= Wi;j � Xi. A similar discussion applies when using Corollary 4.1 (to

obtain �m for m 2 SV after � has been obtained, we compute � �Q00

ST ;SV
) or Theorem 5.2 (to obtain

~
 [m+1], we perform the product ~
 [m]
� ~P).
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First, we precompute ST , 	
�1
T , and h, for each tangible marking:

� During the reachability set construction, ST is normally stored in lexicographic order in a balanced

search tree. However, we can assume from now on that is accessed exclusively using 	�1
T .

� After the reachability graph construction, 	�1
T is stored as an array of size jST j of pointers to the

markings. 	�1
T (k) points the k-th marking, that is, the marking m satisfying 	(m) = k. Several

methods can be used to store a marking. In principle, a single integer describing the position of

m in S 0 according to lexicographic order is su�cient, but, in practice, this integer might require

more than 32 bits.

� h 2 IRjST j carries the same information as �. Instead of storing this vector explicitly, we could

recompute � at each iteration, to further reduce the memory requirements. This is a memory-

execution trade-o�.

It is important to note that an alternative method suggested by Kemper [12] for the state space ex-

ploration has the advantage of allowing the determination of whether a marking is reachable in O(1)

instead of O(log jST j) operations. However, it requires a bit vector of size jS 0j, which might be a problem

when jS 0j � jST j.

If we de�ne

8pi 2 P; low(i) =
i�1Y
l=1

nl and up(i) =
jPjY

l=i+1

nl;

the contribution of the Kronecker sum to the new iteration vector �[m+1] in Eq. (31) can be rewritten

as

�[m] �
M
pi2P

R
i
=
X
pi2P

�[m] �
�
Ilow(i) 
Qi 
 Iup(i)

�
=
X
pi2P

�[m+1]
pi

;

while the contribution of the Kronecker products is

X
tj2X �

w�

j � �
[m] �

O
pi2P

W
i;j
=

X
tj2X �

w�

j � �
[m] �

jPjY
i=1

�
Ilow(i) 
W

i;j

 Iup(i)

�
=

X
tj2X �

w�

j ��
[m+1]
tj

:

We implemented the basic operation a � (Ilow(i) 
 A 
 Iup(i)) in a function mult(a;A; i), where a is

a vector of size jST j and A is a ni � ni matrix. Each term �[m+1]
pi

is computed with a single call to

mult, while each term �
[m+1]
tj

requires jPj successive calls to mult. During this iteration, some states

(possibly unreachable) are passed and temporarily stored. However, if all the states of S 0 are reachable

and tangible, that is, if jS 0j = jST j, there is no need to explicitly identify the reachable states. We stress

that this de�nition allows any number of Kronecker products to be performed, so it does not restrict

the possible number of sub-GSPNs involved in a synchronization.

For the numerical computation we consider a fork/join kanban network of four sub-GSPNs as given

in Figure 6(b). Each sub-GSPN i = 1; . . . ; 4, of the network is modelled by the GSPN shown in Fig.

6(a) on the left. Multiplying Ri and Wi;j by Xi corresponds, de facto, to the automatic elimination

of the immediate transitions tredoi and toki , resulting in the GSPN shown in Fig. 6(a) on the right,

where the rates of tmiredoi and tmioki are the the rate of tm multiplied by the �ring probabilities of tredoi
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Figure 6: A sub-GSPN and a fork/join arrangement of four sub-GSPNs.

and toki, respectively. The parameters specifying the stochastic behavior of the sub-GSPNs are the

rates wini , wmi
, and wbacki and the probabilities woki and wredoi . We assume that these quantities are

constant, but they could depend on the local marking (or even on the global marking, in the case of

synchronizing transitions) without a�ecting the feasibility or the complexity of the solution algorithms.

Pallets enter sub-GSPN i of the kanban network through transition tini, which requires the availability

of a kanban ticket in place pkanbani . Then, the pallet proceeds to the machine, in place pmi
. After being

worked by tmi
, a part is checked for quality and it is either transported back to pmi

by tbacki for further

rework, or moved out of the machine by touti. The numerical values of the parameters for the model are:

wm1
= 1:2, wm2

= 1:4, wm3
= 1:3, and wm4

= 1:1, while, for each sub-GSPN i, woki = 0:7, wredoi = 0:3,

and wbacki = 0:3. All transitions have single-server semantics. The input and output rates for the entire

kanban network are set by assigning win1 = 1:0 and wout4 = 0:9. The synchronizing transition tsynch1
corresponds to the merging of transitions ftout1; tin2; tin3g and has rate 0:4, while tsynch2 corresponds

to transitions ftout2 ; tout3; tin4g and has rate 0:5. In the computations, we vary the number N = Ni of

tokens initially in each place pkanbani .

We consider two alternative decompositions of the model. In Case 1, each node of the kanban network
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corresponds to a sub-GSPN, or one macroplace, in our terminology. Hence, jP̂j = 4 and jX �j = 2. In

this case, the fork-join synchronization creates unreachable markings (any marking where the number

of tokens in pkanban2 and pkanban3 di�er), so that jST j < jS
0j. Instead, in Case 2, we merge sub-GSPNs 2

and 3 into a single macroplace, hence jP̂j = 3. Now, however, the constraint on the number of tokens

in pkanban2 and pkanban3 is taken explicitly into account when generating the local state space for the

corresponding sub-GSPN. Thus, the overall state space becomes the exact cross-product of the three

local state spaces, jST j = jS 0j, and the computation is more e�cient, since there is no need to distinguish

the reachable states from the unreachable ones. This shows how an intelligent decomposition of the

model can greatly a�ect the computational requirements of the solution.

Finally, we make the two synchronizing transitions immediate and apply Theorem 5.2 to a decom-

position into either four or three sub-GSPNs, resulting in Case 3 and 4, respectively. We observe that

the presence of synchronizing transitions leads to unreachable vanishing markings in this model.

N Case e1 e2 e3 e4 �

1 1,2 0.907 0.671 0.671 0.355 0.132

2 1.810 1.328 1.328 0.764 0.248

3 2.722 1.944 1.944 1.154 0.332

4 3.646 2.515 2.515 1.510 0.393

5 4.588 3.053 3.053 1.876 0.439

1 3,4 0.860 0.810 0.810 0.534 0.139

2 1.691 1.671 1.671 1.268 0.263

3 2.529 2.545 2.545 2.037 0.348

4 3.379 3.425 3.425 2.807 0.409

5 3.789 4.454 4.454 3.914 0.529

Table 1: Performance results as a function of N

We compute the expected number ei of tokens in places pmi
, pbacki , and pouti for each sub-GSPN of

the kanban system. For a given i = 1; . . . ; 4, this corresponds to a reward structure where the reward

rate �(m) of a marking m is given by mmi
+mbacki +mouti, and the reward impulses r are identically

zero. We also compute the throughput � of the system, de�ned as the expected �ring rate of tsynch1 . This

corresponds to a reward structure where the reward rates are identically zero and the reward impulses

are one if they correspond to the �ring of tsynch1 , zero otherwise (the same quantity could be computed

by observing tin1 , tsynch2 , or tout4 instead). We stress that, in general, reward rates and impulses could be

marking-dependent. Table 1, shows the resulting numerical values; as expected, e2 = e3. It is apparent

that the �rst sub-GSPN is the most loaded for Case 1 and 2, while the second and third sub-GSPNs are

the bottleneck in Case 3 and 4. This would suggest that, the synchronization behavior is an important

performance factor, in addition to the actual machining rate of each station.

Table 2 shows the size of the state spaces ST , SV , and S 0 as a function of N . The overall number

of nonzero elements for the sparse matrices used by the Kronecker approach (\local") can be compared
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N Case jST j jSV j jS 0j local nonzero(Q) nonzero( ~P) \explore" \solve"

1 1 160 0 256 20 616 616 0.017 0.267

2 4,600 0 10,000 80 28,120 28,120 0.967 12.550

3 58,400 0 160,000 200 446,400 446,400 16.267 309.533

4 454,475 0 1,500,625 400 3,979,850 3,979,850 190.500 4,721.217

5 2,546,432 0 9,834,496 700 24,460,016 24,460,016 1,759.000 22,215.257

1 2 160 0 160 40 616 616 not req. 0.017

2 4,600 0 4,600 186 28,120 28,120 not req. 1.517

3 58,400 0 58,400 678 446,400 446,400 not req. 50.483

4 454,475 0 454,475 1878 3,979,850 3,979,850 not req. 855.917

5 2,546,432 0 2,546,432 4368 24,460,016 24,460,016 not req. 6,054.783

1 3 152 8 256 20 600 608 0.017 0.167

2 3,816 697 10,000 80 23,832 24,529 0.517 20.450

3 41,000 13,656 160,000 200 316,360 330,016 5.967 84.600

4 268,475 128,000 1,500,625 400 2,343,050 2,471,050 75.783 719.050

5 1,270,962 769,480 9,834,496 700 12,025,566 12,795,046 707.483 4,111.681

1 4 152 8 160 40 600 608 0.013 0.150

2 3,816 697 4,600 186 23,832 24,529 0.333 18.550

3 41,000 13,656 58,400 678 316,360 330,016 5.550 76.250

4 268,475 128,000 454,475 1878 2,343,050 2,471,050 67.750 647.100

5 1,270,962 769,480 2,546,432 4368 12,025,566 12,795,046 725.333 3,562.531

Table 2: Computational and storage requirements as a function of N .

to that of conventional solution methods that explicitly generate Q. For comparison, we also list the

number of nonzero elements in ~P, that is after eliminating the local vanishing markings. For Case 1 and

2, this makes no di�erence (there are no synchronizing vanishing markings), while, for Case 3 and 4, the

memory requirements are somewhat larger. It is clear that the only practical limitation of our approach

is the memory required by the two iteration vectors, �[m] and �[m+1], and the addressing vector 	T

(of sizes jST j), or by ~
[m], ~
[m+1], and 	 (of sizes jST j + jSV j), plus the vector h (of size jST j), if not

computed at each iteration. It is also apparent how the approach allows the solution of problems one

order of magnitude larger than with conventional methods in an acceptable amount of time.

The computation times \explore", to explore the reachability set, and \solve", for the Jacobi method

with relaxation parameter ! = 0:9, are given in seconds. The vector h is stored explicitly. The

convergence criterion is set to jj�[m] � �[m+1]jj1 < 10�6 (or jj ~
[m] � ~
[m+1]jj1 < 10�6). The uniform

distribution was used as the initial guess for �[0] (or ~
 [0]). The program was run on a Sony NWS-5000

workstation with 90 Mbyte of main memory.

We stress that the elimination approach (Theorem 4.1) should be used whenever possible, and that

preservation of the non-local vanishing markings (Theorem 5.2) should be used only when there are
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immediate synchronizing transitions. Preservation of all vanishing markings (Theorem 5.1) is probably

never appropriate, since memory usage is the paramount consideration, and this approach increases the

already critical size of the probability vectors. In few pathological cases, it could reduce the size of the

\local" data structures, but these are not critical.

7 Conclusion

We rigorously formalized and implemented an approach based on Kronecker algebra for the solution of

the CTMC underlying a GSPN. The results extend previous works by Donatelli, Buchholz, and Kem-

per [4, 5, 10, 11, 12], to include immediate synchronizing transitions, quite general marking-dependent

behavior, and a reward structure allowing reward impulses associated with immediate transition �rings.

The restrictions imposed on the GSPN are minimal, thus the approach has obvious practical appli-

cations. Furthermore, the structure of the GSPN itself gives strong hints on its decomposition. For

example, if an \elimination-based" solution is desired, the GSPN must be decomposed so that immedi-

ate transitions are local to a sub-GSPN; if the marking-dependency of a transition does not satisfy our

requirements, all the places responsible for this behavior should also be merged in the same sub-GSPN.

Memory requirements are still the main limitation to the solution, but these have now been reduced

from the size of the transition rate matrix to that of the steady-state probability vector, for a very general

class of GSPNs. Even for highly sparse matrices, this corresponds to the ability to solve problems whose

state space is one order of magnitude larger than with a traditional solution approach.

To further increase the size of models that can be solved, we can use the distributed state-space

generation algorithm described in [7], which allows one to partition the memory and execution require-

ments to generate the state space over a set of workstations, and which exhibits excellent speedups for

large problems. The Jacobi method we employed can also be parallelized using a set of workstations, so

that the entire solution process is performed in a distributed fashion and uses the available memory. In

particular, the \local" matrices occupy a negligible amount of memory and can be duplicated on each

processor, while only the probability vector needs to be distributed.

Since our results are complementary to those in [7], we can reasonably hope for a two-orders of mag-

nitude increase in the size of manageable models, assuming the availability of a network of workstations.

As a target for the near future, we will attempt to solve CTMCs with 108 states and a transition rate

matrix with 109 non-zeros in a matter of hours using a dozen workstations with 128Mbytes of memory

each.

Eventually, even CTMCs of this size might not be enough to satisfy the needs of a serious modeler.

Our results, combined with the distributed state-space generation algorithm, are directly applicable to

the family of approximations suggested in [17]. We can simply consider each sub-GSPN separately for

the coarsest model, two adjacent sub-GSPNs for the next more accurate model, then three adjacent

sub-GSPNs and so on. The comparison of the results from successive approximate models can suggest

an estimate of the quality of the results. This allows trading o� lower approximation errors against

higher computational e�ort. We are currently investigating the requirements to assure an accurate

solution (e.g., approximation errors below 5%) on a single workstation for a large class of models, where
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the CTMCs may have more than 1030 states.

A prototype version of the program used to compute the results we presented is available and can

be obtained by contacting the second author. The input to the program has a SPNP-style syntax [9].

References

[1] Ajmone Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, G., and Cumani, A.

The e�ect of execution policies on the semantics and analyis of Stochastic Petri Nets. IEEE Trans.

Softw. Eng. 15, 7 (July 1989), 832{846.

[2] Ajmone Marsan, M., Balbo, G., and Conte, G. A class of Generalized Stochastic Petri

Nets for the performance evaluation of multiprocessor systems. ACM Trans. Comp. Syst. 2, 2 (May

1984), 93{122.

[3] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G.

Modelling with generalized stochastic Petri nets. John Wiley & Sons, 1995.

[4] Buchholz, P. Numerical solution methods based on structured descriptions of Markovian mod-

els. In Computer performance evaluation (1991), G. Balbo and G. Serazzi, Eds., Elsevier Science

Publishers B.V. (North-Holland), pp. 251{267.

[5] Buchholz, P., and Kemper, P. Numerical analysis of stochastic marked graphs. In Proc. Int.

Workshop on Petri Nets and Performance Models (PNPM'95) (Durham, NC, Oct. 1995), IEEE

Comp. Soc. Press, pp. 32{41.

[6] Ciardo, G., Blakemore, A., Chimento, P. F. J., Muppala, J. K., and Trivedi, K. S.

Automated generation and analysis of Markov reward models using Stochastic Reward Nets. In

Linear Algebra, Markov Chains, and Queueing Models, C. Meyer and R. J. Plemmons, Eds., vol. 48

of IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1993, pp. 145{191.

[7] Ciardo, G., Gluckman, J., and Nicol, D. Distributed state-space generation of discrete-state

stochastic models. ORSA J. Comp.. Submitted.

[8] Ciardo, G., Muppala, J. K., and Trivedi, K. S. On the solution of GSPN reward models.

Perf. Eval. 12, 4 (1991), 237{253.

[9] Ciardo, G., Trivedi, K. S., and Muppala, J. K. SPNP: Stochastic Petri net package. In

Proc. 3rd Int. Workshop on Petri Nets and Performance Models (PNPM'89) (Kyoto, Japan, Dec.

1989), IEEE Comp. Soc. Press, pp. 142{151.

[10] Donatelli, S. Superposed Stochastic Automata: a class of stochastic Petri nets amenable to

parallel solution. In Proc. 4th Int. Workshop on Petri Nets and Performance Models (PNPM'91)

(Melbourne, Australia, Dec. 1991), IEEE Comp. Soc. Press, pp. 54{63.

29



[11] Donatelli, S. Superposed generalized stochastic Petri nets: de�nition and e�cient solution. In

Application and Theory of Petri Nets 1994, Lecture Notes in Computer Science 815 (Proc. 15th

Int. Conf. on Applications and Theory of Petri Nets, Zaragoza, Spain) (June 1994), R. Valette,

Ed., Springer-Verlag, pp. 258{277.

[12] Kemper, P. Numerical analysis of superposed GSPNs. In Proc. Int. Workshop on Petri Nets and

Performance Models (PNPM'95) (Durham, NC, Oct. 1995), IEEE Comp. Soc. Press, pp. 52{61.

[13] Murata, T. Circuit theoretic analysis and synthesis of marked graphs. IEEE Trans. Circ. and

Syst. CAS-24, 7 (July 1977), 400{405.

[14] Plateau, B., and Atif, K. Stochastic Automata Network for modeling parallel systems. IEEE

Trans. Softw. Eng. 17, 10 (Oct. 1991), 1093{1108.

[15] Stewart, W. J. Introduction to the Numerical Solution of Markov Chains. Princeton University

Press, 1994.

[16] Stewart, W. J., and Goyal, A. Matrix methods in large dependability models. Tech. Rep.

RC-11485, IBM T.J. Watson Res. Center, Yorktown Heights, NY, Nov. 1985.

[17] Takahashi, Y. Aggregate approximation for acyclic queuing networks with communication block-

ing. In Queueing Networks with Blocking, H. G. Perros and T. Altiok, Eds. Elsevier Science Pub-

lishers B.V., 1989, pp. 33{47.

[18] Wirth, N. Algorithm + Data Structures = Programs. Prentice-Hall, 1976.

30


